a) Higher uptime with lower operational cost and lower management complexity: By including only the components needed to run containers, Bottlerocket has a smaller resource footprint, shorter boot times, and a smaller security attack surface compared to Linux. A smaller footprint helps reduce costs because of decreased usage of storage, compute, and networking resources. The use of container primitives (instead of package managers) to run software lowers management overhead.
b) Improved security from automatic OS updates: Updates to Bottlerocket are applied as a single unit which can be rolled back, if necessary, which removes the risk of “botched” updates that can leave the system in an unusable state. Update failures are common with general-purpose OSes because of unrecoverable failures during package-by-package updates. In Bottlerocket, security updates can be automatically applied as soon as they are available in a minimally disruptive manner and be rolled back if failures occur.
c) Open source and universal availability: An open development model enables customers, partners, and all interested parties to make code and design changes to Bottlerocket.
d) Premium Support: The use of AWS-provided builds of Bottlerocket on Amazon EC2 is covered under the same AWS support plans that also cover AWS services such as Amazon EC2, Amazon EKS, Amazon ECR.